勾股定理的证明方法
勾股定理的证明方法
。
这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。
的平方=3的平方+4的平方
在图一中,D ABC 为一直角三角形,其中 Ð A 为直角。我们在边 AB、BC 和 AC 之上分别画上三个正方形 ABFG、BCED 和 ACKH。过 A 点画一直线 AL 使其垂直於 DE 并交 DE 於 L,交 BC 於 M。不难证明,D FBC 全等於 D ABD(S.A.S.)。所以正方形 ABFG 的面积 = 2 ´ D FBC 的面积 = 2 ´ D ABD 的面积 = 长方形 BMLD 的面积。类似地,正方形 ACKH 的面积 = 长方形 MCEL 的面积。即正方形 BCED 的面积 = 正方形 ABFG 的面积 + 正方形 ACKH 的面积,亦即是 AB2 + AC2 = BC2。由此证实了勾股定理。
这个证明巧妙地运用了全等三角形和三角形面积与长方形面积的关系来进行。不单如此,它更具体地解释了,「两条直角边边长平方之和」的几何意义,这就是以 ML 将正方形分成 BMLD 和 MCEL 的两个部分!
这个证明的另一个重要意义,是在於它的出处。这个证明是出自古希腊大数学欧几里得之手。
欧几里得(Euclid of Alexandria)约生於公元前 325 年,卒於约公元前 265 年。他曾经在古希腊的文化中心亚历山大城工作,并完成了著作《几何原本》。《几何原本》是一部划时代的著作,它收集了过去人类对数学的知识,并利用公理法建立起演绎体系,对后世数学发展产生深远的影响。而书中的第一卷命题 47,就记载著以上的一个对勾股定理的证明。
图二中,我们将4个大小相同的直角三角形放在一个大正方形之内,留意大正方形中间的浅黄色部分,亦都是一个正方形。设直角三角形的斜边长度为 c,其余两边的长度为 a 和 b,则由於大正方形的面积应该等於 4 个直角三角形和中间浅黄色正方形的面积之和,所以我们有
(a + b)2 = 4(1/2 ab) + c2
展开得 a2 + 2ab + b2 = 2ab + c2
化简得 a2 + b2 = c2
由此得知勾股定理成立。
【扩展阅读篇】
用文字记载一个星期来的自己的思想、学习、生活情况的文字记录。
它有别于“流水账”,日记,在于流水账是有什么就记录什么,不需要作任何修饰和认识的升华,而且内容不限,一周之内可以记录您每一天的任何事情。而周记就是:每周一次,并且对自己的生活学习思想认识有一定的升华。 周记是对个人和某个团体一周的所见、所闻、所思、所感、所惑、所获的记录。还可以写一件在这一周里让你有所感触的事。
编辑本段作用
从学生角度来说,周记用来了解学生的思想动态,学习情况,答疑解惑,并通过周记的形式而置一些跟教育主题有关的主题作文,提高学生的认识,从而在全班范围内形成正确、积极、健康的舆论环境,并为主题班会准备材料,提高同学们参与的积极性。
从老师的角度来说,周记用来回顾一周的得失,提出经验教训,让班主任对班上情况有一个更加详细和全面的了解,提高工作的针对性和准确性。老师除了用来了解同学一周发生的事情外,还用来锻炼同学的文章水平,使同学文章水平得以提高。
编辑本段格式
周记的'题目(写作范围:读后感;见闻;趣事;数学周记......)
1.记事
2.自评(优,缺)
3.解决措施
4.下周计划
5.自己的所见所闻所感
其实周记并没有一种标准的格式,只需要同学们每周把自己的所看到的、听到的、想到的、经历的东西记下来,形成的文字片断或一篇文章,一周写一则就可以了。
编辑本段怎么写周记
不少同学又开始问了,周记怎么写?小学初中周记开头怎么写?
如果是一个片断,将事情写清、将要表达的意思表达完整就行了,当然,时间充裕,你可以将前因后果,你的想法补充完整,形成一篇文章。不论无论,周记没有什么特殊规定的格式,跟我们平时说话写文章一样,要求就是条理清楚地说清一件事、一个想法。
周记的关键是要真,真事、真情、真想,不要虚构。用力表达你正经历的、正思考的事,对提高你的写作能力是有帮助的,不要当作负担,也不要觉得有任何压力,因为真的,只要排列一下就行了。
同时,周记交给老师后,也可让老师来了解你的生活、你的想法,或许对你有帮助。
去年也谈过周记怎么写,转到下面,大家再看看。
老师布置了周记作业,怎么写呢?许多同学发了愁。
其实周记也好,日记也好,都是要写一段时间内印象最深的事。周记就是本星期内的事。
回想一下这个星期发生了什么,在学习上有什么问题,班级里有什么新鲜事,和朋友老师间关系如何,这些都可以写,和日记相比周记可以写的内容更多了,需要突出一两个重点。
如果大脑里立刻就想起一二件事情,记忆深刻,那么恭喜,你就有材料了,将它们的前因后果,事情经过,个人感想写清楚吧。
有人会问:不好意思,一想到过去的几天,我印象里只记得吃了一次大餐,或者只记得被老师骂了一顿,或者跟同学闹别扭心里不爽,这些都没有重要意义,怎么能写呢?告诉你,既然你想到了,就说明是值得写的。有意义的事情,不一定非得是意义重大,思想崇高,自己的生活琐事,也是值得一写的,只要你写出你的感受。我们每天的日子不都是这些细小的沙子一样的事情组成的吗?这些沙子,串起了我们的欢笑,串起了我们的忧愁,串起了我们的无聊,引领着我们一天天,不知不觉地在长大。
更有一些同学说,这个周最无味,什么也没有发生,没什么可写的。再想想,再想想,多个心眼,仔细观察,你会找到的。
【勾股定理的证明方法】相关文章:
1.爱的证明
2.勾股定理无字证明
4.勾股定理证明题
8.方法